2 Outputs with AS-Interface data decoupling DIN Rail Power Supply, 244 Watt

- High efficiency: 89\%

- ACin 115/230V manual sw itch
- WxHxD = 120x134x120mm
- Two electrically insulated outputs
- Each output with AS-interface data decoupling
- Meets EMC standards: EN 50081-1, EN 50082-2, NAMUR, EN 61000-4, VDE 0160/2
- Design meets VDE 0551
- Both outputs with double terminals

Figure shows a similar unit (see page 4)

Preliminary data sheet

The DPA247 is a very compact power supply designed for fieldbus applications in which power and data share the same twisted-pair (AS-interface specification).

At two electrically insulated outputs, the unit supplies power, decouples data from the power supply, and makes the two cables of each output (AS-i + and symmetrical with respect to the shield terminal The decoupling allows the use of un-shielded cables.

The PELV output circuit has electronic protection against overload and short-circuit. Isolation is equivalent to safety transformers as specified in VDE 0551.

Vout	lout	Pout	Features	Order-No.
Vout1	$\mathbf{3 0 . 5 5 V}$	4A	122 W	OVP, AS-Interf. data decoupling
DPA247.141				
Vout2	$\mathbf{3 0 . 5 5 V}$	4A	122 W	OVP, AS-Interf. data decoupling

W arranty: 2 years from date of delivery.

Output

Voltage Vout1		30.55 V	Fixed.
Vout2		30.55 V	Fixed.
Accuracy	max.	$\pm 3 \%$	includes: production-adjustment, line regulation, and load regulation.
M inimum load		None	Not necessary.
Output power Pout	max.	244W	Mounting side by side possible.
Noise, Ripple	max.	50 mVpp	$\begin{aligned} & 0 . . .20 \mathrm{M} \mathrm{~Hz} \text {, } \\ & \text { constant current or R-load. } \end{aligned}$
Modulation voltage	max.	5.6 Vrms	Analogous 16Vpp sine.
Over-voltage protection	typ.	35V	Threshold accuracy $\pm 4 \%$.
Derating		5W/K	$+60^{\circ}$ bis $+70^{\circ} \mathrm{C} \mathrm{Ta}$.
Operating indicator		2 green LEDs	On the front, lighting at Vout>30V
Output circuit		PELV	VDE 0106.
Safety			VDE 0106, EN 60 950, VDE 0805.
Ioslation Vout1 against Vout2 max. 500 VAC			
All outputs are protected	in	pen-circuit,	uit, and overload.

Input		
Line input 1	$100 \ldots 127 \mathrm{~V} \mathrm{AC}$	Switch position 115 V.
\cdot Range	$88 \ldots 132 \mathrm{~V} \mathrm{AC}$	Full spec.
	$80 \ldots 150 \mathrm{~V} \mathrm{AC}$	Derated, see page 2.
Line input 2	$220 \ldots 240 \mathrm{~V} \mathrm{AC}$	Switch position 230 V.
\cdot Range	$176 \ldots 264 \mathrm{~V} \mathrm{AC}$	Full spec.
	$150 \ldots 300 \mathrm{~V} \mathrm{AC}$	Derated, see page 2.
Line frequency	$47 \ldots 63 \mathrm{~Hz}$	DC or 400 Hz , see page 2.
Input current	max.	$6.0 \mathrm{Aeff} . / 2.8 \mathrm{Aeff}$.
@oise suppression $115 / 230 \mathrm{~V} \mathrm{AC}$.		
		EN $55022 / \mathrm{B}$ and
	FCC/B	

Specifications are valid at 230V AC, unless otherwise stated. They are subject to change without prior notice.

Output (continued)
Voltage regulation:

Voltage regulation:					
- Line regulation		max.	\%	± 0.2	$88 . . .132 \mathrm{~V} \mathrm{AC} / 187 \ldots 264 \mathrm{~V}$ AC, Pout $=240 \mathrm{~W}$.
- Load regulation stat.	$\Delta U_{\text {stat }}$	max.	\%	± 0.5	lout $=50 \%$, D lout $= \pm 50 \%$.
- Temperature coefficient		typ.	\%/K	± 0.02	
Ripple		max.	mVpp	50	$0 . .20 \mathrm{MHz}$, ACnom, lout $=100 \%$, R or llog oad.
Current limitation					
Threshold		min/max.	A	4.2 / 6.5	Fixed, 29V Z-load
- Characteristic				See graph on page 3	
Short-circuit				8.5	lowering with increasing temperature
Start delay	tDelay	typ.	ms	150	After switch on (to).
Vout rise-up time	tRise	typ.	ms	350	Load 4A and C-load 15mF. ${ }^{30}$
On and off characteristic					Approximately monotonic $\mathrm{ta}^{\text {doelay }}$

Vout1, Vout2

$\begin{array}{ll}\text { Load 4A and C-load 15mF. } \\ \text { Approximately monotonic } & { }^{30 \mathrm{~V}}\end{array}$
t
See graph on page 3

Input (continued)

AC input range $1 / 2 \mathrm{~V} \mathrm{AC}$			88... 132 / 176... 264	Full spec.
DC input range		\checkmark DC	210... 375	Full spec., input voltage selector must be in 230 V pos.!
Derated AC range 1 / 2		V AC	80... 88 / 150...187, $150 / 300$ for 0.5s	
Frequency range		Hz	47... 63	Full spec.
Derated frequency range		Hz	63... 400	Increased leakage currents.
In-rush current	max.	A	80	@ cold-start and 264V AC,
				NAMUR standard met ($\mathrm{Ta}=25^{\circ} \mathrm{C}$).
Hold-up time	min.	ms	10	@ 88/176V AC, Pout $=240 \mathrm{~W}$, see fig. on page 3.
Power factor $\quad \lambda$	typ.		0.6	@ 88V AC, Pout $=244 \mathrm{~W}$.
Internal fuse			$5 \times 20 \mathrm{~mm} \mathrm{T8A} / 250 \mathrm{~V}$ (IEC127/2-5)	To replace, see page 4.
Input range selection			M anual	115/230V switch, position see page 4

Data Decoupling / Earth Symmetrization

Output inductance
Terminating impedance
Symmetry tolerance
Electric strength

Typ. Output Charakteristic Vout1/Nout2

Typ. Efficiency

Typ. Derating over Temperature

Min. Hold-up Time

Protection

Safety

Electrical safety			
- Test voltage		3 kV AC	Primary / secondary.
according to EN 60950		2.5 kV AC	Primary / PE.
fort $=2 \mathrm{sec}$		500 V AC	Secondary / PE.
- Air- / leakage distance		6.4 / 8mm	Primary / secondary.
		4 mm	Primary / PE.
- Isolation resistance	min.	$5 \mathrm{M} \Omega$	VDE 0551.
- Protection class		I	VDE 0106 part 1, IEC 536.
- PE resistance		$<0.1 \Omega$	VDE 0805.
- Protection system		IP20	DIN 40050, IEC 529.
- Leakage current	max.	0.75 mA	EN 60950 (50Hz frequency line).
- Output circuit		PELV	VDE 0160.
- Over-voltage class		II	VDE 0110 part 1, IEC 664.
Touch safety		Finger test	VDE 0100 §6, EN 60 950, VBG4.
Penetration protection		$>\varnothing 3 \mathrm{~mm}$	e.g. screws, small parts etc.

Operation and Ambient Area

Application class		KSF	DIN 40040.
Operation temperature	max.	$-10^{\circ} \ldots+70^{\circ} \mathrm{C}$	Ta (measured at 1 cm distance).
• Derated range		$+60^{\circ} \ldots+70^{\circ} \mathrm{C}$	Derating, see diagram.
Storage temperature	typ.	$-20^{\circ} \ldots+100^{\circ} \mathrm{C}$	Ta.
Humidity	max.	95%	Non-condensing.
Mechanical usage		Vertical	See page 4.
Lateral spacing		None	No gap needed.
Cooling		Normal convection	Don't obstruct air flow.
Dirt protection level	max.	2	VDE 0110 part 1.
Vibration		0.075 mm	IEC 68-2-6 (10..60Hz).
Shock		$11 \mathrm{~ms} / 15 \mathrm{~g}$	IEC 68-2-27 (3 shocks).
Operation height	max. $2,000 \mathrm{~m}$	Above sea level.	

Efficiency / Loss

100% load	typ.	$89 \% / 30 \mathrm{~W}$	@ 230V ACin.
Loss with no load	typ.	4 W	

Reliability and Lifetime

M TBF according to Siemens
standard SN29500 typ. 200,000h 230VAC, lout $=100 \%,+40^{\circ} \mathrm{C} \mathrm{Ta}$. Only long life ($>2,000 \mathrm{~h} @ 105^{\circ} \mathrm{C}$) electrolytic capacitors are used.
Function test 100% Test certificate enclosed.

Fuse

The PSU has electronic protection against external short-circuits. In case of an internal defect, a fuse disconnects the unit. It can only be replaced by opening the unit which should be done by the supplier.

Installation for Operating

Install DIN rail TS35/7.5 horizontally, ensuring correct orientation.
For other installation considerations consult your representative. Ensure free air flow.

Dimensions and Connections
Fully enclosed $\mathrm{Al} / \mathrm{Mg}$ alloy housing. All mechanical dimensions are in mm.

1) Do not remove PE screws.

The shield terminal should be connected to earth or to the shield of the load cable.

Screw terminals:

On the front side. These accept wire of up to $4 \mathrm{~mm}^{2}$ cross section (single-core cable) or $2.5 \mathrm{~mm}^{2}$ cross section (multi-core flex).
Remove 9 to 15 mm of insulation from wire.
Take care of standards which must be satisfied, e.g. VDE 0100 or EN 60950.

Caution:

Do not remove any screws on box, as internal safety connections could be disconnected!

Operation without AS-Interface

When operating without AS-Interface (e.g. in a lab. test) you should connect a $470 \mu \mathrm{~F}$ capacitor between AS-i + and AS-i -, because commercial lab-loads often tend to oscillate. They may resonate with the data decoupling, and the oscillations may exceed the permitted modulation voltage.

Schematic

Modifications (contact supplier)

Other output voltages,
OEM -versions.

